Is the use of dexmedetomidine compatible with monitoring of motor and somatosensory evoked potentials (MEPs and SSEPs)?

Although relatively rare, neurological injury is a dreaded complication in spine surgery due to its potential for serious postoperative motor and sensory deficits¹. For this reason, there has been an increase in the use of intraoperative neurophysiologic monitoring (IONM) to detect and reverse damage during spine surgery¹. Motor and somatosensory evoked potentials (MEPs and SSEPs) are affected by both pharmacological and physiological parameters². To reduce anesthetic impact on IONM, an opioid-propofol total intravenous anesthesia (TIVA) is often used³.

Dexmedetomidine is an alpha-2 adrenergic agonist that has sedative, analgesic, and anxiolytic properties, and may be a useful agent as an adjunct to an opioid-propofol TIVA technique⁴. Dexmedetomidine enhances inhibitory synaptic transmission through activation of descending noradrenergic system, which then produces post synaptic hyperpolarization⁵. Therefore, systemic administration of dexmedetomidine may theoretically inhibit IONM by enhancing inhibitory neurotransmission in both sensory and motor neurons⁵. Although low doses are generally considered to be safe, high doses can be suppressive of MEPs and are not recommended during IONM⁶. A dose escalation study by Mahmoud et al. demonstrated that clinically relevant plasma concentrations of 0.6 to 0.8ng/mL drastically reduced the amplitude of MEPs in 40 adult patients⁷.

Panse et al. compared the effect of dexmedetomidine versus fentanyl in IONM using propofol based TIVA technique in kyphoscoliosis correction surgery in 20 adolescent patients aged 12-188. All patients were induced with a standardized anesthetic regimen including glycopyrrolate, ondansetron, midazolam, fentanyl, propofol, and succinylcholine8. Baseline SSEP was noted once paralysis was weaned off and no other neuromuscular blocking agent was used during surgery8. Group A (10 patients) were maintained on propofol (5-10mg/kg/h) and dexmedetomidine (0.5-0.7mcg/kg/h) while group B (10 patients) were maintained on propofol (5-10mg/kg/h) and fentanyl (0.01-0.03mg/kg/h)8. Bispectral index (BIS) was monitored to aid in the depth of anesthesia, and a concentration of 0.2 -0.4% sevoflurane was used in all patients to maintain the range of 40-608. Overall, there were no statistically significant changes to SSEP in both groups8. However, group A had a better hemodynamic profile, reduced requirement of sevoflourane (0.2% vs. 0.4% in group A vs. B), and superior surgical field quality using the Former's score8. Thus, dexmedetomidine may be a more desirable agent to be used in propofol-based TIVA for SSEP monitoring compared to fentanyl in kyphoscoliosis correction surgeries8.

Liu et al. conduced a randomized, double-blinded placebo-controlled study to look at the at the effect of bolus dosing of dexmedetomidine followed by a constant infusion rate in 165 adult patients receiving thoracic spinal decompression surgery 9 . Group T received a propofol- and remifentanil-based TIVA, Group D1 received TIVA combined with dexmedetomidine at a constant infusion rate (0.5mcg/kg/h), while group D2 received TIVA combined with dexmedetomidine delivered in a loading dose (1mcg/kg in 10 minutes) followed by a constant infusion rate (0.5mcg/kg/h) 9 . All patients were induced with a standardized anesthetic regimen including propofol, sufentanil, midazolam, and cisatricurium. Propofol-remifentanil TIVA was maintained with a target-controlled infusion and adjusted to maintain BIS within the range of 40-60 9 . Compared to the T and D1 groups, the D2 group showed a significant decrease in amplitude of both SSEP and MEP (by 27.1% \pm 12.3% and 24.8% \pm 15.04%, respectively), as well as an increase in SSEP latency (by 5.5% \pm 3.5% compared to baseline values), lasting 10-15 minutes 9 . There was no significant

difference between the T and D1 groups⁹. Therefore, the authors concluded that a bolus dose of dexmedetomidine with a constant infusion rate can significantly impact IONM, while a constant rate without boluses does not exert an inhibitory effect on IONM⁹.

Holt et al. conducted a retrospective case-control study of 70 pediatric patients with idiopathic scoliosis undergoing posterior spine fusion surgery (PSFS) who received varying doses of dexmedetomidine with propofol-remifentanil TIVA: 30 patients received a 0.5 mcg/kg/h infusion; 10 patients received 0.3 mcg/kg/h infusion; and 30 control patients who did not receive any 10 . All patients had a standardized anesthetic induction including morphine, propofol, and rocuronium. After proning, all infusions were started, and a train-of-four ratio was recorded before evoking baseline MEP 10 . After this, rEEG was used to titrate the depth of anesthesia by adjusting the propofol and remifentanil infusions alone. MEP amplitudes in six muscle groups at three time points: baseline after proning (T1), one hour after incision (T2), and after spine exposure but before insertion of first screw (T3) 10 . The primary outcome of this study was a reduction in MEP amplitude at T2 and T3 by >50% compared to control when dexmedetomidine was infused at 0.5mcg/kg/h^{10} . At 0.3 mcg/kg/h, there was a significant reduction of MEP amplitude at T3 but not in T2 10 . Based on the results of this study, the use of dexmedetomidine in children undergoing PSFS may significantly affect MEP monitoring 10 .

In conclusion, the effect of dexmedetomidine on IONM remains a highly debated topic, especially in high doses $^{6-10}$. Moreover, dexmedetomidine should be used with caution in the pediatric population 10 . However, an infusion of 0.4-0.7mcg/kg/h of dexmedetomidine without boluses in the adult population does not seem to interfere with IONM and may be a beneficial additive to a propofol-opioid TIVA anesthetic 8,9 .

References

- 1. Charalampidis, A., Jiang, F., Wilson, J. R., Badhiwala, J. H., Brodke, D. S., & Fehlings, M. G. (2020). The use of intraoperative neurophysiological monitoring in spine surgery. *Global Spine Journal*, *10*(1_suppl). https://doi.org/10.1177/2192568219859314
- 2. Nguyen, V., Atikilt, N., Cho, C., Lee, L., Le, S., & Lopez, J. (2019). EMG, MEP, and SSEP in the Intraoperative Neurophysiologic Monitoring of Lumbar Surgeries. *Neurology*.
- 3. Hermanns, H., Lipfert, P., Meier, S., Jetzek-Zader, M., Krauspe, R., & Stevens, M. F. (2007). Cortical somatosensory-evoked potentials during spine surgery in patients with neuromuscular and idiopathic scoliosis under propofol–remifentanil anaesthesia. *British Journal of Anaesthesia*, *98*(3), 362–365. https://doi.org/10.1093/bja/ael365
- 4. Khorsand, S. M. (n.d.). Maintenance of general anesthesia: Overview. UpToDate. Retrieved June 17, 2022, from https://www.uptodate.com/contents/maintenance-of-general-anesthesia-overview?search=dexmedetomidine+anesthesia&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1#H1286 08633
- 5. Lu, Y., & Perl, E. R. (2007). Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. *The Journal of physiology*. 582(1), 127-136.
- Walker, C. T., Kim, H. J., Park, P., Lenke, L. G., Weller, M. A., Smith, J. S., Nemergut, E. C., Sciubba, D. M., Wang, M. Y., Shaffrey, C., Deviren, V., Mummaneni, P. V., Chang, J. M., Mummaneni, V. P., Than, K. D., Berjano, P., Eastlack, R. K., Mundis, G. M., Kanter, A. S., ... Uribe, J. S. (2020). Neuroanesthesia guidelines for optimizing transcranial motor evoked potential neuromonitoring during deformity and complex spinal surgery. Spine, 45(13), 911–920. https://doi.org/10.1097/brs.0000000000003433
- 7. Mahmoud, M., Sadhasivam, S., Salisbury, S., Nick, T. G., Schnell, B., Sestokas, A. K., Wiggins, C., Samuels, P., Kabalin, T., & McAuliffe, J. (2010). Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. *Anesthesiology*, 112(6), 1364–1373. https://doi.org/10.1097/aln.0b013e3181d74f55
- 8. Panse, N. A., Kale, J. V., Phalke, T. L., & Bhojane, U. P. (2021). Dexmedetomidine versus fentanyl in intraoperative neuromus cular monitoring using propofol based total intravenous anesthesia regimen in kyphoscoliosis correction surgery. *Ain-Shams Journal of Anesthesiology*, *13*(1). https://doi.org/10.1186/s42077-021-00190-2
- 9. Liu, T., Qin, Y., Qi, H., Luo, Z., Yan, L., Yu, P., Dong, B., Zhao, S., Wu, X., Chang, Z., Liu, Z., Liu, X., Yuan, T., Li, H., Xiao, L., & Wang, G. (2022). A loading dose of dexmedetomidine with constant infusion inhibits intraoperative neuromonitoring during thoracic spinal decompression surgery: A randomized prospective study. *Frontiers in Pharmacology*, *13*. https://doi.org/10.3389/fphar.2022.840320
- 10. Holt, F., Strantzas, S., Zaarour, C., Chamlati, R., Vreugdenhil, I., Luginbuehl, I., Karsli, C., & Faraoni, D. (2020). The effect of dexmedetomidine on motor-evoked potentials during pediatric posterior spinal fusion surgery: A retrospective case-control study. *Canadian Journal of Anesthesia/Journal Canadian D'anesthésie*, 67(10), 1341–1348. https://doi.org/10.1007/s12630-020-01758-6