Dr Victor Liu March 2019

## What is burst suppression? Describe the evidence for (or against) it's use in neuroanesthesia?

Burst suppression is a specific EEG pattern characterized by high voltage electric activity with periods of isoelectric activity in between. It's detection on EEG has many implications within medicine but I will focus mainly on its application in the operating room (specifically in neuroanesthesia).

From what I have read, achieving a burst suppression pattern is used in some clinical scenarios to reduce cerebral metabolic rate (up to a maximum of 60%¹) in the hopes of conferring neuroprotection in the setting of raised intracranial pressure or transient flow arrest states (during cerebral aneurysm clipping). In general, there is very little evidence to support the use of burst suppression in any setting. Most of the evidence was focused in other clinical areas such as comatose post-cardiac arrest patients (no evidence of improved neurologic outcome²) and traumatic brain injury (no evidence of improved outcomes³). There is one small case series of patients undergoing carotid endarterectomy which used an etomidate induced burst suppression protocol for refractory EEG changes during vascular clamping but adverse outcomes were rare in this series⁴. With regards to its use in cerebral aneurysm surgery, post-hoc analysis from the IHAST trial showed no difference in short or long term neurologic outcomes with the use of supplemental protective drugs (which I interpreted to target burst suppression)⁵. In cardiac anesthesia, the use of anesthetic agents for neuroprotection during deep hypothermic circulatory arrest is commonly used but also has very little evidence⁶. There are recent studies in cardiac surgery to suggest burst suppression may be harmful as the risk of post-operative delirium is correlated with longer durations of intra-operative burst suppression<sup>7-8</sup>.

In summary, I was not able to find any high quality evidence to support the use of burst suppression in a variety of clinical settings. In general, there is a paucity of literature on this topic as there were no large well conducted trials assessing burst suppression in neuroanesthesia for the purpose of neuroprotection. There is accumulating evidence that burst suppression may be harmful as it increases risk of post-operative delirium.

## References

- 1. Miller RD, Eriksson LI, Fleisher L, Wiener-Kronish JP, Young WL. Miller's Anesthesia, 8th ed. Philadelphia, PA: Churchill Livingstone; 2009: 387.
- 2. Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. N. Engl. J. Med.: 1986, 314(7);397-403
- 3. Roberts, I. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev: 2000
- 4. Melgar MA, Mariwalla N, Madhusudan H, Weinand M. Carotid endarterectomy without shunt: the role of cerebral metabolic protection. Neurol Res. 2005;27:850–856.
- 5. Hindman, BJ, Bayman, EO, Pfisterer, WK No association between intraoperative hypothermia or supplemental protective drug and neurologic outcomes in patients undergoing temporary clipping during cerebral aneurysm surgery: findings from the Intraoperative Hypothermia for Aneurysm Surgery Trial. Anesthesiology 2010; 112: 86–101.
- 6. Dewhurst AT, Moore SJ, Liban JB. Pharmacological agents as cerebral protectants during deep hypothermic circulatory arrest in adult thoracic aortic surgery: a survey of current practice. Anaesthesia. 2002;57:1016–1021.
- 7. Fritz BAKalarickal PLMaybrier HR, et al. . Intraoperative electroencephalogram suppression predicts postoperative delirium. Anesth Analg 2016; 122: 234–42
- 8. Soehle, M., Dittmann, A., Ellerkmann, R. K., Baumgarten, G., Putensen, C., & Guenther, U. (2015). Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. BMC anesthesiology, 15, 61.