Effect of Anesthesia on the Developing Brain

One of the fundamental premises of general anesthesia is that it produces a state of unconsciousness and unresponsiveness that is reversible implying that the brain remains neurophysiologically the same before and after anesthesia. Some of the experimental data obtained over last several decades question this implication (1-5). Multiple general anesthetic agents have been shown to affect the development of the immature animal brain by induction of neuronal apoptosis and disturbance of the normal cerebral development (6). These findings originated from studies conducted primarily in rodents and nonhuman primates. Human observational studies have both confirmed and rejected associations between exposure to general anesthesia in young children and subsequent impaired neurodevelopment (7-9).

Approximately 6 million children receive anesthesia annually in the US alone, almost one half of these include children of less than 3 years of age (10). Given the large number of neonates and infants that undergo surgery and anesthesia, the implications of these data are apparent. Although the relevance of these findings to humans is a subject of heated debate, the unequivocal demonstration of neuronal death in animals exposed to clinically relevant concentrations of anesthetics has provoked significant concern amongst anesthesia care providers, regulatory agencies and naturally families of the patients.

In December 2016, the US FDA issued a Drug Safety Communication (DSC) warning that general anesthesia and sedation drugs used in children less than 3 years of age or in pregnant women in their third trimester who were undergoing anesthesia for more than 3 hours or repeated use of anesthetics "may affect the development of children's brains" (11). This warning has resulted in a labeling change to all common anesthetic drugs binding to GABA and NMDA receptors, including volatile anesthetic agents, propofol, ketamine, barbiturates, and benzodiazepines.

Despite this, several large well controlled studies of brief, single exposures for relatively minor procedures have been reassuring (9). GAS study published in Lancet that evaluated effects of GA vs awake spinal anesthesia in infants on their neurodevelopmental outcomes at 2 and 5 years provided strong evidence of equivalence between the outcomes (12, 13). In addition, the PANDA study published in JAMA included sibling pairs with only 1 sibling exposed to anesthesia before age 3 (14). This study also failed to find any difference between siblings on extensive battery of neurocognitive testing at age 8–15 years. Both studies have important implications for the field of anesthetic neurotoxicity. They imply that a single, relatively brief exposure to anesthesia is not associated with an increased incidence of neurobehavioral adverse effects.

Many researchers feel that the focus of this field of investigation should shift to prolonged or repeated exposures to anesthesia, or to the effect of anesthesia on vulnerable brains such as the fetus, congenital heart disease infants, or infants with other complex neonatal surgical conditions. These long-term adverse neurodevelopmental effects, however, remain difficult to interpret because of confounding by indication with otherwise healthy young children rarely needing to undergo lengthy or repeated procedures under general anesthesia.

Obvious ethical considerations limit the conductance of experiments in human neonates. The use of animal models is still considered feasible. In order to identify reasonable neurocognitive outcomes, vulnerable periods in brain development need further identification, as do neurotoxic and neuroprotective interventions.

- 1. Patel P, Sun L. Update on neonatal anesthetic neurotoxicity: insight into molecular mechanisms and relevance to humans. Anesthesiology 2009;110(4):703–8.
- 2. Creeley C, Dikranian K, Dissen G, et al. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 2013;110(Suppl 1):i29–38
- 3 Rappaport BA, Suresh S, Hertz S, Evers AS, Orser BA: Anesthetic neurotoxicity clinical implications of animal models. N Engl J Med 2015; 372: 796–797.
- 4 Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, Hanig JP, Patterson TA, Slikker W Jr, Wang C: Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 2011; 33: 220–230.
- 5 Creeley CE, Dikranian KT, Dissen GA, Back SA, Olney JW, Brambrink AM: Isofluraneinduced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology 2014; 120: 626–638.
- 6. Clausen NG, Hansen TG, Disma N. Anesthesia Neurotoxicity in the Developing Brain: Basic Studies Relevant for Neonatal or Perinatal Medicine. Clin Perinatol. 2019 Dec;46(4):647-656
- 7 Glatz P, Sandin RH, Pedersen NL, et al. Association of anesthesia and surgery during childhood with long-term academic performance. JAMA Pediatr 2017; 171(1):e163470.
- 8 Graham MR, Brownell M, Chateau DG, et al. Neurodevelopmental assessment in Kindergarten in children exposed to general anesthesia before the age of 4 years: a retrospective matched cohort study. Anesthesiology 2016;125(4): 667–77.
- 9. Andropoulos DB. Effect of Anesthesia on the Developing Brain: Infant and Fetus. Fetal Diagn Ther. 2018;43(1):1-11
- 10 Sun L: Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth 2010; 105(suppl 1):i61–i68.
- 11 US Food and Drug Administration Website: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-review-results-new-warnings-about-using-general-anesthetics-and; accessed December 11, 2019
- 12. Davidson AJ et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet. 2016 Jan 16;387(10015):239-50
- 13. McCann ME et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet. 2019 Feb 16;393(10172):664-677
- 14. Sun LS et al. Association Between a Single General Anesthesia Exposure Before Age 36 Months and Neurocognitive Outcomes in Later Childhood. JAMA. 2016 Jun 7;315(21):2312-20. doi: 10.1001/jama.2016.6967